4,515 research outputs found

    Photon-assisted electron transmission resonance through a quantum well with spin-orbit coupling

    Full text link
    Using the effective-mass approximation and Floquet theory, we study the electron transmission over a quantum well in semiconductor heterostructures with Dresselhaus spin-orbit coupling and an applied oscillation field. It is demonstrated by the numerical evaluations that Dresselhaus spin-orbit coupling eliminates the spin degeneracy and leads to the splitting of asymmetric Fano-type resonance peaks in the conductivity. In turn, the splitting of Fano-type resonance induces the spin- polarization-dependent electron-current. The location and line shape of Fano-type resonance can be controlled by adjusting the oscillation frequency and the amplitude of external field as well. These interesting features may be a very useful basis for devising tunable spin filters.Comment: 10pages,4figure

    Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states

    Full text link
    The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the prefactor of exponent is obtained in terms of periodic instantons which are responsible for tunneling at excited states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and medium axes. Using complex time path-integral we demonstrate the oscillation of tunnel splitting with respect to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings . The oscillation is gradually smeared and in the end the tunnel splitting monotonously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the medium axis. The oscillation behavior is similar to the recent experimental observation with Fe8_8 molecular clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the ferrimagnetic particles is proposed.Comment: 15 pages, 5 figures, acceptted to be pubblished in Physical Review

    In-Plane Magnetic Anisotropy In RF Sputtered Fe-N Thin Films

    Full text link
    We have fabricated Fe(N) thin films with varied N2 partial pressure and studied the microstructure, morphology, magnetic properties and resistivity by using X-ray diffraction, atomic force microscopy, transmission electron microscopy, vibrating-sample magnetometer and angle-resolved M-H hysteresis Loop tracer and standard four-point probe method. In the presence of low N2 partial pressure, Fe(N) films showed a basic bcc a-Fe structure with a preferred (110) texture. A variation of in-plane magnetic anisotropy of the Fe(N) films was observed with the changing of N component. The evolution of in-plane anisotropy in the films was attributed to the directional order mechanism. Nitrogen atoms play an important role in refining the a-Fe grains and inducing uniaxial anisotropy.Comment: 11 pages, 6 figure

    A brain-region-based meta-analysis method utilizing the Apriori algorithm

    Get PDF
    Background: Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. Results: In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. Conclusions: The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis

    Parent-adolescent attachment and peer attachment associated with Internet Gaming Disorder: a longitudinal study of first-year undergraduate students

    Get PDF
    Background and aims: Given that Internet Gaming Disorder (IGD) has tentatively been included in DSM-5 as a psychiatric disorder, it is important that the effect of parental and peer attachment in the development of IGD is further explored. Methods: Utilizing a longitudinal design, this study investigated the bidirectional association between perceived Q1 parent-adolescent attachment, peer attachment, and IGD among 1,054 first-year undergraduate students (58.8% female). The students provided demographic information (e.g., age, gender) and were assessed using the nine-item Internet Gaming Disorder Scale and the Inventory of Parent and Peer Attachment. Assessments occurred three times, six months apart (October 2017; April 2018; October 2018). Results: Cross-lagged panel models suggested that IGD weakly predicted subsequent mother attachment but significantly negatively predicted father attachment. However, father and mother attachment could not predict subsequent IGD. Moreover, peer attachment has bidirectional association with IGD. Further, the model also demonstrated stable crosssectional negative correlations between attachment and IGD across all three assessments. Discussion and conclusions: The findings of the present study did not show a bidirectional association between parental attachment and IGD, but they did show a negative bidirectional association between peer attachment and IGD. The results suggested previous cross-sectional associations between IGD and attachment, with larger links among males than females at the first measurement point. We found that peer attachment could negatively predict subsequent IGD, which indicates that peer attachment plays an important role in preventing addictive gaming behaviors for university students
    corecore